Biomechanical Dynamics of Cranial Sutures during Simulated Impulsive Loading
نویسندگان
چکیده
Background. Cranial sutures are deformable joints between the bones of the skull, bridged by collagen fibres. They function to hold the bones of the skull together while allowing for mechanical stress transmission and deformation. Objective. The aim of this study is to investigate how cranial suture morphology, suture material property, and the arrangement of sutural collagen fibres influence the dynamic responses of the suture and surrounding bone under impulsive loads. Methods. An idealized bone-suture-bone complex was analyzed using a two-dimensional finite element model. A uniform impulsive loading was applied to the complex. Outcome variables of von Mises stress and strain energy were evaluated to characterize the sutures' biomechanical behavior. Results. Parametric studies revealed that the suture strain energy and the patterns of Mises stress in both the suture and surrounding bone were strongly dependent on the suture morphologies. Conclusions. It was concluded that the higher order hierarchical suture morphology, lower suture elastic modulus, and the better collagen fiber orientation must benefit the stress attenuation and energy absorption.
منابع مشابه
Assessment of the role of sutures in a lizard skull: a computer modelling study.
Sutures form an integral part of the functioning skull, but their role has long been debated among vertebrate morphologists and palaeontologists. Furthermore, the relationship between typical skull sutures, and those involved in cranial kinesis, is poorly understood. In a series of computational modelling studies, complex loading conditions obtained through multibody dynamics analysis were impo...
متن کاملInfant skull and suture properties: measurements and implications for mechanisms of pediatric brain injury.
The mechanical properties of the adult human skull are well documented, but little information is available for the infant skull. To determine the age-dependent changes in skull properties, we tested human and porcine infant cranial bone in three-point bending. The measurement of elastic modulus in the human and porcine infant cranial bone agrees with and extends previous published data [McPher...
متن کاملThe biomechanical role of the chondrocranium and sutures in a lizard cranium
The role of soft tissues in skull biomechanics remains poorly understood. Not least, the chondrocranium, the portion of the braincase which persists as cartilage with varying degrees of mineralization. It also remains commonplace to overlook the biomechanical role of sutures despite evidence that they alter strain distribution. Here, we examine the role of both the sutures and the chondrocraniu...
متن کاملThe global impact of sutures assessed in a finite element model of a macaque cranium.
The biomechanical significance of cranial sutures in primates is an open question because their global impact is unclear, and their material properties are difficult to measure. In this study, eight suture-bone functional units representing eight facial sutures were created in a finite element model of a monkey cranium. All the sutures were assumed to have identical isotropic linear elastic mat...
متن کاملResponses of intramembranous bone and sutures upon in vivo cyclic tensile and compressive loading.
Cranial vault and facial sutures interpose between mineralized bones of the skull, and may function analogously to appendicular and cranial base growth plates. However, unlike growth plates that are composed of chondrocyte lineage, cranial and facial sutures possess heterogeneous cell lineages such as mesenchymal cells, fibroblasts, and osteoblasts, in addition to vascular-derived cells. Despit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015